

Wall Thickness Distribution

Nordic ARM Academy Stockholm 6th of February 2019

© ULTRAPOLYMERS - Wall Thickness Distribution - 06/02/2019 - Ronny Ervik

Wall thickness distribution Industry average

Industry average: 20% *

Good moulders: >10%

As a result of this wide tolerance, in rotational molding, it is common to specify minimum wall thickness rather than nominal wall thickness.

*(Crawford, Thorne, Nugent and more)

Wall Thickness Distribution Why is it important to control?

- 1: Lower cost
- 2: Improved mechanical properties
- 3: Easier processing
- 4: Improved aesthetics

Cost

Even wall thickness distribution equals:

-less material usage-shorter cycle time

If foaming: double up

Cost example Pontoon - material 400 litre \cong 340 dm² = 3,4m²

Minimum wall thickness = 4 mm

3,4 * 0,004 * 935 + 20% = 15,5 kg

Moulder use 18,5 kg. 3 kg or €6 more pr product.

Cost example Pontoon – cycle time

Assume following cost pr hour:

Machine depreciation	:	€25
Energy	:	€10
Labour, 1 pers	:	€30
(Mould depreciation	:	€5)
Total		€65/h
		€1/min

2 minutes extra cycle time = €2/pr poduct*

*if only one mould on the arm

Cost example Pontoon

Material $+ \in 6$ Cycle time $+ \in 2$

Total

+€8/product

Assume 500 products pr year. €4000 is lost pr product/year

Mechanical properties Differ with wall thickness

- -Stiffness
- -Impact strength
- -Kiss offs
- -Fatigue

Mechanical properties Fatigue

Fatigue is the weakening of a material caused by repeatedly applied loads.

Finite element analysis is often used to characterise the strength of a product

Mechanical properties Fatigue

- -Tank mould made in cooperation with toolmaker
- -1/8 of a normal tank
- -Radii as described in literature
- -Vertical and horizontal ribs
- -Narrow sections
- -Threads

Mechanical properties Fatigue

Cycling with a pressure of 0,1 bar @ 1 bar less than 100 cycles

Easier processing

With good control over the wall thickness distribution it is easier to make good products and faster to get first series approved.

-Software

-Weight calculation

-Shrinkage calculation

Improved aesthetics

- -Less warpage
- -Easier demoulding
- -Less jigging and pressurisation
- -Especially if foaming

Warpage

Warpage is just uneven shrinkage

Temperature gradient = cooling gradient

Cooling gradient = crystallinity gradient

Crystallinity gradient = shrinkage gradient

Shrinkage gradient = warpage

*Quote from Laws

Slow cooling. Crystalline structure forms - large shrinkage

*Picture from Crawford

Warpage

*Picture from Crawford

ULTra POLYMERS

So what next?

Get an ultrasonic measuing device and start measuring.

